Efficient MLS pseudorandom generator for ARM cpu

Ivan Mellen, Embedded Signals, Apr 2010

A Maximum Length Sequence (MLS) is a type of pseudorandom binary sequence.lts generation is
based on maximal Linear Feedback Shift Registers (LFSR).

Linear Feedback Shift Registers, taps [17 15]

The usual way of generating MLS is to calculate each output bit individually,then pack output bits
into output word with desired width. Since new bit calculation requires at least 3 cycles, 32 bit
random number requires at least 96 cycles. Program below can do it in 4 cycles.

Pseudorandom sequence repeats after 2"-1 bits, where N is length of the shift register. Packing bit
sequence into words with width W generates unique sequence of D=2"-1 words (actually only first
M=(2"-1)/W words is truly independent, rest of the sequence is shifted version of the first M
words).

Five MLS sequence generators { a to e } most suitable for the 32 bit ARM architecture were
implemented as described below.

Speed was tested with Cortex M3 based microcontroller. The Cycle column describes time required
to calculate complete word, not only single bit of output.

Generator | Bits out (word width) Taps Cycles | Periode length
a 1-28 b [31 28] 3 2’1
b 1-25b [32 3026 25] 5 271
c 32b [63 62] 4 2%-1
d 32b [64 63 61 60] 6 251
e 64 b [64 63 61 60] 10 2%1

Just to put length of discussed MLS into perspective, this is the time after which output words starts
to repeat under assumption that pseudorandom words are generated at 10MHz rate (10 million
words per second):

Sequence length Periode duration (@10E6 words per second)
2’1 214.75 seconds = 3.58 min
2.1 429.49 seconds = 7.15 min
251 9.2E11 seconds = 29227.1 years
2%-1 18.4E11 seconds = 58454.2 years

Output bit packing example for generator a [31 28]:
W output (only W lower bits shown), W set to multiples of 4 for easier reading

4 bits 000f072800ee7cd00f3b34a0edcbH5..
8 bits 00 0f 07 28 00 ee 7c dO Of 3b 34 a0 ed c5 ...

16 bits 000f 0728 00ee 7cd0 0f3b 34a0 edc5 ...

24 bits 000f07 2800ee 7¢d00f 3b34a0 edc523 ...

28 bits 000f072 800ee7c d00f3b3 4aledcs ...

Text bellow contains C code together with corresponding ARM instructions.

Note: variables rnd (31,32 bit version) resp. rndL, rndH (63,64 bit version) contain generator state,
so they must be preserved during generator lifetime.

Also, these variable has to be initialized with non zero initial seed.

C code section:

unsigned int rnd; //state of 31 and 32 bit generator
unsigned int rndH,rndL; //state of 63 and 64 bit generator
unsigned int tmp,tmp2; // temporary variables
const W=24; //W bits generated in 1 iteration , generators a,b
//W=1 to 28 for 31 bit MLS (a)
//W=1 to 25 for 32 bit MLS (b)

//a) 1-28 bit out; taps [31,28]; 3 cycles; length=2"31-1
tmp=rnd * (rnd <<3); // eor tmp, rnd, rnd,lsl #3
rnd= rnd <<W; // 1srs rnd, rnd, #W

rnd=rnd | (tmp >>(31-W)) // orr rnd, rnd, tmp, Isr #31-W

output: W least significant bits of rnd

//b) 1-25 bit out; taps [32 30 26 25]; S cycles; length=2"32-1

tmp=rnd " (rnd <<2); // eor tmp, rnd, rnd,ls] #2
tmp2=rnd M(rnd<<1); // eor tmp2, rnd, rnd,ls] #1
tmp=tmp”(tmp2<<6); // eor tmp, tmp, tmp2,lIsl #6
rnd=rnd<<W,; // 1srs rnd, rnd, #W

rnd=rnd | (tmp >>32-W); // orr rnd, rnd, tmp, Isr #32-W

output: W least significant bits of rnd

//c) 32 bit out; taps [63 62]; 4 cycles; length=2"63-1

tmp=rmdH * (rndH <<1); //eor tmp, rndH, rndH,ls] #1

rndH=rndL | (tmp >>31); // orr rndH, rndL, tmp,lsr #31
rndL= tmp * (rndL >>31); // eor rndL, tmp, rndL,lsr #31
rndL= rmdL<<I; //1sls rndL, rndL, #1

output:32 bits in rndH

//d) 32 bits out; taps [64 63 61 60]; 6 cycles; length=2"64-1

rmdH = rndH * (rndH <<1); // eor rndH, rndH, rndH, Isl #1
rndH =rmdH » (rndH <<3); //eor rndH, rndH, rndH, Isl #3
tmp = rndL * (rndL >>1); //eor tmp, rndL, rndL, Isr #1
tmp = rndH * (tmp >>28); // eor tmp, rndH, tmp, Isr #28
rndH = rndL; // mov rndH, rndL

rndL = tmp * (rndL >>31); //eor rndL, tmp, rndL, lsr #28

output:32 bits in rndL (or rndH)

//e) 64 bits out; taps [64 63 61 60]; 10 cycles; length= 2"64-1

rmdH = rndH * (rndH <<1); // eor rndH, rndH, rndH, Isl #1
rmdH = rndH * (rndH <<3); // eor rmdH, rndH, rndH, Isl #3
tmp = rndL » (rndL >>1); // eor tmp, rndL, rndL, Isr #1
tmp = rndH * (tmp >>28); // eor tmp, rndH, tmp, Isr #28
rndH = tmp * (rndL >>31); // eor rndL, tmp, rndL, Isr #28
mdL =rndL * (rndL <<1); // eor rndL, rndL, rndL, Isl #1
rmdL = rdL » (rndL <<3); // eor rndL, rndL, rndL, Isl #3
tmp = rndH * (rndH >>1); // eor tmp, rndH, rndH, Isr #1
tmp = rndL » (tmp >>28); //eor tmp, rndL, tmp, lsr #28
rndL = tmp * (rndH >>31); // eor rndH, tmp, rndH, Isr #28

output:64 bits [rndH, rndL]

If you have any questions contact address is i1mellen@embeddedsignals.com

